Rad33, a new factor involved in nucleotide excision repair in Saccharomyces cerevisiae.

نویسندگان

  • Ben den Dulk
  • Su Ming Sun
  • Martina de Ruijter
  • Jourica A Brandsma
  • Jaap Brouwer
چکیده

In Saccharomyces cerevisiae the Rad4-Rad23 complex is involved in initial damage recognition and responsible for recruiting the other NER proteins to the site of the lesion. The Rad4-Rad23 complex is essential for both NER subpathways, Transcription Coupled Repair (TCR) and Global Genome Repair (GGR). Previously, we reported on the role of the Rad4 homologue YDR314C in NER. YDR314C is essential for preferential repair of the transcribed strand in RNA pol I transcribed rDNA. In large scale interaction studies it was shown that YDR314C physically interacts with a small protein encoded by the ORF YML011C. In the present study we show that YML011C is involved in NER and we propose to designate the YML011C ORF RAD33. Cells deleted for RAD33 display intermediate UV sensitivity that is epistatic with NER. Strand specific repair analysis shows that GGR in RNA pol II transcribed regions is completely defective in rad33 mutants whereas TCR is still active, albeit much less efficient. In RNA pol I transcribed rDNA both GGR and TCR are fully dependent on Rad33. We show that in both rad23 and rad33 cells Rad4 and YDR314C protein levels are significantly reduced. The homology of YDR314C to Rad4, together with the similar relation of both proteins to Rad33 prompted us to propose RAD34 as name for the YDR314C gene. Although the rad23rad33 double mutant is considerably more UV sensitive than a rad23 or rad33 single mutant, deletion of RAD33 in a rad23 background does not lead to a further reduction of Rad4 or Rad34 protein levels. This suggests that the role of Rad33 is not solely the stabilization of Rad4 and Rad34 but that Rad33 has an additional role in NER.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 6 The NER protein Rad 33 shows functional homology to human Centrin 2 and is involved in modification of Rad 4

In the yeast Saccharomyces cerevisiae the Rad4-Rad23 complex is implicated in the initial damage recognition of the Nucleotide Excision Repair (NER) pathway. NER removes a variety of lesions via two subpathways: Transcription Coupled Repair (TCR) and Global Genome Repair (GGR). We previously showed that the new NER protein Rad33 is involved in both NER subpathways TCR and GGR. In the present st...

متن کامل

Molecular cloning of RAD16, a gene involved in differential repair in Saccharomyces cerevisiae.

We have cloned the RAD16 gene of Saccharomyces cerevisiae and determined its nucleotide sequence. The gene complements the UV sensitivity of a rad16 mutant and restores the ability to repair the transcriptionally inactive HML alpha locus that is absent in this mutant. Disruption mutants that were constructed using the cloned gene are viable and UV sensitive and show no detectable growth defect....

متن کامل

A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae.

Upon DNA damage, eukaryotic cells activate a conserved signal transduction cascade known as the DNA damage checkpoint (DDC). We investigated the influence of DDC kinases on nucleotide excision repair (NER) in Saccharomyces cerevisiae and found that repair of both strands of an active gene is affected by Mec1 but not by the downstream checkpoint kinases, Rad53 and Chk1. Repair of the nontranscri...

متن کامل

A Synthetic Interaction between CDC20 and RAD4 in Saccharomyces cerevisiae upon UV Irradiation

Regulation of DNA repair can be achieved through ubiquitin-mediated degradation of transiently induced proteins. In Saccharomyces cerevisiae, Rad4 is involved in damage recognition during nucleotide excision repair (NER) and, in conjunction with Rad23, recruits other proteins to the site of damage. We identified a synthetic interaction upon UV exposure between Rad4 and Cdc20, a protein that mod...

متن کامل

Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • DNA repair

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2006